您好!欢迎光临海普欧环保集团有限公司网站! 英文站 网站地图
全国服务热线:
18853631118
当前位置: 首页 >> 新闻中心

新闻中心

四川省污水处理中的垃圾渗透处理技术
 

污水处理中的垃圾渗透处理技术。
近年来,水污染问题一再被提到公众面前,尤其是地下水污染,令人惊讶,渗坑和垃圾渗滤液,直接影响到我们饮用水的安全。渗水坑的问题是众所周知的。今天我们就来谈谈垃圾渗滤液的危害以及如何预防。
什么是垃圾渗滤液。
垃圾渗滤液是指一种高浓度的有机废水,来源于垃圾在填埋场中所含的水分、进入填埋场的雨、雪等水分,扣除垃圾和覆盖土层的饱和持水量,经过垃圾层和覆盖土层。
一、垃圾渗滤液的特性。
(1)水质复杂、有害。研究表明,利用气相色谱-质谱联用仪检测了垃圾渗滤液中的63种主要有机污染物,其中34种的可靠性在60%以上。其中,烷烃6种,羧酸19种,酯类5种,醇类和酚类10种,醛酮类10种,酰胺类7种,芳香烃类1种,其他5种。其中已被确定为1种致癌物、4种致癌物和辅助致癌物、1种致突变物,其中6种已被列入我国环境优先污染物“黑名单”。
(2)CODcr和BOD5浓度高。渗滤液中最大CODcr和BOD5分别可达90000mg/l、38000mg/l甚至更高。
(3)氨氮含量高,随着填埋时间的延长而增加,最高可达1700毫克/升。渗滤液中的氮多以氨氮的形式存在,约占TNK的40%-50%。
(4)水质变化大。垃圾渗滤液按填埋年限可分为两类:一类是填埋时间小于5年的年轻渗滤液,其特点是CODcr和BOD5浓度高,可生化性强;另一种是已填埋5年以上的老化渗滤液。随着新鲜垃圾逐渐变成陈垃圾,其pH值接近中性,CODcr和BOD5浓度降低,BOD5/CODcr比值降低,氨氮浓度升高。
(5)金属含量高。垃圾渗滤液含有十多种金属离子,其中铁和锌在酸发酵阶段含量较高,铁的浓度可达2000mg/L左右;锌的浓度可达130mg/L左右,铅的浓度可达12.3mg/L,钙的浓度甚至可达4300mg/L1.6渗滤液中微生物营养元素的失衡主要是由于C、N、p的失衡。
二、垃圾渗滤液处理工艺的关键技术。
(1)高浓度氨氮处理技术。
目前,在高浓度氨氮的处理中,广泛采用氨汽提和生物脱氨。大多数氨汽提技术使用空气作为汽提介质和低效汽提设备。相对来说,蒸馏塔脱氨是一个很有前途的解决方案。虽然采用这种方法需要一定量的蒸汽,但由于水温的升高,可以减少用于调节酸碱度的酸碱量,降低气液比,降低风机功耗。另外,脱氨尾气经过蒸馏后,可以通过冷凝直接转化为液氨,可以循环使用,有效解决了尾气处理难的问题。因此,开发新型高效汽提设备和适当处理脱氨尾气已成为未来的研究方向。
(2)渗滤液深度处理技术。
对于老化的渗滤液,生物处理基本无效,需要采用基于物化处理的深度处理技术。高级处理技术一般包括高级氧化方法,如臭氧氧化、臭氧+光催化氧化、臭氧催化氧化、膜处理技术等。
我国已经开展了以负二氧化钛为催化剂的光催化氧化研究。国外对渗滤液深度处理的研究很多,主要集中在光催化氧化和反渗透。a.文泽尔等通过鼓泡塔+薄膜光反应器比较了UV/H2O2、UV/H2O2/O3、UV/O3等方法处理垃圾渗滤液,表明从运行成本和去除效率考虑,UV/O3处理渗滤液是最有效的方法。高级氧化技术的研究主要集中在高效反应器的开发上,以提高单位能耗的处理效率,减少反应的能量投入,找出适合我国国情的渗滤液高级处理技术,使渗滤液达到相应的排放标准。
三、垃圾渗滤液的危害。
研究表明,利用气相色谱-质谱联用仪检测了垃圾渗滤液中的63种主要有机污染物,其中34种的可靠性在60%以上。其中,烷烃6种,羧酸19种,酯类5种,醇类和酚类10种,醛酮类10种,酰胺类7种,芳香烃类1种,其他5种。其中已被确定为1种致癌物、4种致癌物和辅助致癌物、1种致突变物,已被列入中国环境优先污染物,有6个黑名单。
不管什么样的废水,不管什么样的污染,它对我们的健康构成了巨大的威胁。既然提到了垃圾渗透,我们就详细介绍一个垃圾渗透处理的成功案例。
四、垃圾填埋场渗滤液的处理。
项目概述。
1、亚热带季风湿润气候区,年平均降雨量998.4毫米,蒸发量1000毫米,风速2.8米/秒,人口135万,日垃圾处理量1200吨,现产生垃圾渗滤液约600m3/d,渗滤液水质CODCr约1万mg/l,氨氮约1500mg/l,BOD5约7000mg/l。
垃圾渗滤液的质量和数量变化很大,尤其是生化需氧量变化很大。垃圾渗滤液处2、理厂已经建了三年了。实际运行中发现,渗滤液废水的可生化性普遍较好,氨氮浓度呈逐年上升趋势。经处理后,排放水质标准为:CODCr<300mg/L,BOD5<150mg/L,NH3-N<25mg/L,SS<200mg/L,出水主要控制指标为CODCr和NH3-N..
3、为满足处理要求,渗滤液处理工艺采用生化处理与物化处理相结合的多级处理方案,工艺流程为:调节池—-UASB—FEO反应器—氨汽提—-CASS反应池—混凝气浮—消毒—氧化塘—出水。
表1各处理单元的设计进水口和出水口。

五、工艺流程和相关处理单元。
本项目主要处理设施及设备包括:渗滤液调节池提升泵房、调节池(2台2栅)、UASB反应器(2台2栅)、一沉池(1台)、氨汽提塔(2台)、吸收塔(2台)、CASS反应池(2台4栅)、FEO反应器(1台)
UASB反应堆。
UASB反应堆在实际运行中效果良好,完全能够满足设计要求。它具有以下特点:(1)反应器内污泥浓度高,处理效果稳定高效,耐冲击负荷,特别适合处理高浓度有机废水;
(2)剩余污泥产量低,无需经常排放污泥,操作管理简单,污泥龄长;
(3)无需特殊加热设备即可常温处理,尤其是反应器建在地下或半地下时;
(4)一般具有较高的容积负荷和产气率。
六、FEO反应堆。
1.FEO是利用电解质溶液中铁和其他金属晶体结构与碳之间形成的许多局部微电池来处理有机废水的一种电化学处理技术,其在无外加电能条件下,利用金属—金属、非金属—非金属之间的电位差而产生的无数微小电池的作用,使废水中的污染物通过电化氧化—还原反应、凝聚、气浮和沉降等作用达到净化的目的。
2.垃圾渗滤液与FEO反应器填料(主要由Fe、Al、C、Mn、Zn等20几种物质按一定比例均匀混合而成)接触相应时间后,会发生催化氧化还原反应,废水中难生化、不可生化物质的分子结构发生变化,其杂环与杂链被打开,形成可生化的小分子物质,同时在反应过程中产生Fe2+及其他离子,互相作用具有较强的吸附及絮凝活性,可大量的吸附废水中分散的微小离子和高分子物质,形成絮凝物可经沉淀或气浮去除。FEO反应器对CODCr和NH3—N都有一定的去除效果,且可以降解相当数量的不可生化降解物质。
氨吹脱吸收塔
物化脱氮采用氨吹脱法,其参数设置已较成熟,渗滤液先用熟石灰在反应槽中调节pH至10~10.5,用污水泵送至填料塔,离心风机从塔底送风,维持水气比(1500~2000)∶1;逆流接触,将水中游离的NH3脱析至空气中,一般pH越高,NH3的吹脱率越高,其吹脱效果可通过循环水量和pH来调节。实际运行过程中发现氨吹脱塔的效率很低,经常无法达到设计的去除率。出水pH由硫酸调节至下一阶段好氧生化处理要求,排放的NH3须设置吸收装置,吸收液可采用20%~25%的稀硫酸吸收。
七、CASS池
好氧生化处理工艺的选择应重点考虑到要有较强的脱氮效果。目前,在实际应用中活性污泥法的处理效果相当稳定,本系统选用CASS工艺,其在反应器的入口处设一生物选择区,并进行了20%左右的污泥回流,有利于提高污泥的活性,并能使溶解性易降解基质得到快速的去除,进一步有效抑制丝状菌的增殖,且反硝化量也有所增加。主反应区是好氧区,有机物在此得到充分的氧化分解。CASS工艺高效耐冲击负荷且可灵活进行工艺调整以应对不同的情况,曝气反应沉淀过程均在一个池中进行,防止污泥膨胀提高了脱氮效果。并且在单池处理效果达不到要求时可考虑采用多级CASS池串联系统。
八、混凝沉淀池
生化处理后的出水需设物化处理装置以去除难生化降解和不可生化降解的有机物,目前考虑到降低运行成本可采用较为简易的混凝沉淀法进行处理。渗滤液处理过程中预计产生的剩余污泥约为30m3/d,经污泥浓缩池浓缩外运填埋,实际运行中剩余污泥的产率比预计值低很多。渗滤液处理后出水排放至天然形成并经过人工改造的氧化塘。
生物硝化法处理高氨氮废水的分析研究
(1)在CASS池硝化过程中,氨被自养型微生物转化为亚硝酸盐和硝酸盐,这些好氧自养型微生物对环境有相当高的要求,转化进程由处理单元中的生长条件决定,主要影响因素有溶解氧、温度、碳酸盐含量及pH、SRT、活性污泥浓度及性能、有毒有抑制作用的物质含量(重金属、NH3—N、NO-x—N等)。在CASS池中生长的异养型微生物和自养型微生物之间存在相互关系,应选择合适的生长条件来调节CODCr和NH3—N的去除率。由于CASS池内有机物的去除是必然因素,也就是只可能发生去除有机物不去除氨氮的情况,不可能发生只去除氨氮不去除有机物的情况。再加上本处理单元中NH3—N的去除率是控制因素,应优先考虑满足适宜生物硝化的条件。
(2)在运行研究过程中,CASS池内的DO一般保持在2mg/L以上,温度大于20℃,SRT超过60天,进水重金属含量很低,对微生物几乎没有影响,这些因素都满足生物硝化的最佳条件。
(3)而关于活性污泥浓度及性能、碳酸盐含量及pH、NH3—N、NO-x—N浓度对硝化进程的影响比较复杂,所以有必要对这些影响因素进行全面的分析和监控。
(4)CASS系统在处理中低浓度氨氮废水时的一个重要特征是硝化和反硝化在曝气阶段同时进行,运行时控制溶解氧浓度可使活性污泥外部好氧内部缺氧,絮体外部好氧硝化内部反硝化以达到完全脱氮的效果。但在处理高氨氮废水时若要满足处理要求就需要考虑采用多池串联的运行方式,先将废水中的氨氮降至200mg/L以下再进行硝化和反硝化的后续脱氮处理,根据生物反应动力学原理,采用多级CASS池串联运行,使废水在池内的流动呈现整体推流而在不同区域内为完全混合的复杂流态,保持稳定的处理效果,提高容积利用率。在第一个CASS池内应侧重生物硝化,尽可能提高氨氮转化率,这就需要保持较长的水力停留时间和生物固体停留时间,保证在池内保持较高数量的硝化菌。根据实际情况发现,N/MLSS负荷率应尽量小于0.3,高于此值脱氮的效果会急剧下降,在进水氨氮一定的情况下需要尽可能地提高MLSS,使其不能低于3000mg/L。在CASS池实际运行中可采取极高的MLSS(>10000mg/L)进行生化处理运行依旧平稳,氨氮去除率达80%左右,CASS池内活性污泥的监测情况见表2

(5)活性污泥浓度的提高是通过改善污泥沉降性能来实现的,SVI应低于50mL/g,本系统处理单元的SVI一般只有25mL/g左右,如此良好的沉降性能是由于FEO反应器内产生的铁盐和外加的混凝剂PAC、PAM等改善了污泥的絮凝效果。
(6)除了高活性污泥浓度外,碳酸盐的用量及pH同样对生物硝化脱氮有较大影响。氨氮完全氧化所需的碳酸盐约为7.1mg碳酸盐/mg氨氮,且必须有足够的碱度以防止反应过程中出现酸性,碳酸盐不足时硝化进程难以顺利进行,除非有足量的无机碳(在运行中不太可能实现),在本系统的实际运行中发现石灰用量不足(低于4.2t/d)会直接影响氨氮的去除率。
(7)pH对硝化作用的影响现有的各种观点有些分歧,目前普遍认为最佳值为7~8.5,要将CASS池内的大部分处理区域的pH控制在此范围内,需要将CASS池的进水pH控制在8.4~8.9,因为在处理高氨氮废水过程中生成了较多的强酸(HNO3)使得CASS池的pH值下降较多,一般情况下CASS池的进水pH在8.5以上,出水pH就会在7以下,这样就可以保证CASS池内大部分区域的处理效果。本系统对各处理单元的pH进行了监控,进水pH为7.5~7.9时,UASB进水pH7.5~7.9,出水7.6~7.9,氨吹脱吸收塔进水pH9~10.5,出水8.6~9.5,CASS池进水pH8.4~9,出水6.5~7.1。这反映出垃圾填埋场运行了3年多时间后,其产生的渗滤液pH就已转至弱碱性。从目前看来渗滤液pH的变化呈现较为稳定的规律,随着时间的增长渗滤液pH逐渐由弱酸性转至弱碱性。
在实际运行中发现氨吹脱吸收塔进水pH为9时的脱氮效率还达不到pH为10.5时的1/3,所以石灰的投加量不足也就是氨吹脱吸收塔脱氮效率低的一个重要原因。CASS池进水pH为8.6时,出水pH一般约为6.7,在这种状态下NH3—N的去除率能达到80%左右,出水NH3—N基本能控制在200mg/L以下,只需要再对其进行相应的后续生化处理就可以了。


地区分站: 北京市  天津市  河北省  山西省  内蒙古  辽宁省  吉林省  上海市  江苏省  浙江省  安徽省  福建省  江西省  山东省  河南省  湖北省  湖南省  广东省  广西省  海南省  重庆市  四川省  贵州省  云南省  西藏  陕西省  甘肃省  青海省  宁夏  新疆  诸城  
首页|关于我们|产品中心|成功案例|视频中心|联系我们|网站优化:致一科技
 
海普欧环保集团有限公司
地址:山东省潍坊市诸城市密州街道龙华街715号
手机:18853631118
免费咨询热线:400-863-7369
联系电话:0536-6353818
 
 
版权所有:海普欧环保集团有限公司
备案号:鲁ICP备15034703号
地区分站